

Lunar Reconnaissance Orbiter

Project Overview & Status

NASA Goddard Space Flight Center craig.r.tooley@nasa.gov http://lunar.gsfc.nasa.gov/

NASA's Vision For Space Exploration LRO's Role

Jan. 14 2004 – The President announced a new vision for space exploration that included among its goals "to return to the moon by 2020 as the launching point for missions beyond. Beginning no later than 2008, we will send a series of robotic missions to the lupar surface to research and prepare for future human exploration."

Lunar Reconnaissance Orbiter Mission Objectives

Lunar Orbiter camera

Apollo PanCam

Galileo multispectral imaging of 60% surface

al Lun ace elem

Objective: The Lunar Reconnaissance Orbiter (LRO) mission objective is to conduct investigations that will be specifically targeted to prepare for and support future human exploration of the Moon.

Locate Potential Resources

Hydrogen/water at the lunar poles
Continuous solar energy
Mineralogy

Safe Landing Sites

High resolution imagery
Global geodetic grid
Topography
Rock abundances

Space Environment

Energetic particles
Neutrons

Implementing the Vizion

LRO Follows in the Footsteps of the Apollo Robotic Precursors

- Apollo had three (Ranger, Lunar Orbiter and Surveyor) robotic exploration programs with 21 precursor missions from 1961-68
 - 1. Lunar Orbiters provided medium & high resolution imagery (1-2m resolution) which was acquired to support selection of Apollo and Surveyor landing sites.
 - 2. Surveyor Landers made environmental measurements including surface physical characteristics.
 - 3. Ranger hard landers took the first close-up photos of the lunar surface
- Exploration needs the above information to go to new sites and resource data to enable sustainable exploration.

Lunar Orbiter ETU in Smithsonian Air & Space Museum, Washington DC

LRO Enables Global Lunar Surface Access

Covers 4 of 10 ESAS sites.

outside Apollo heritage area

LRO Mission Overview

- Launch in late 2008 on a EELV into a direct insertion trajectory to the moon. Co-manifested with LCROSS spacecraft.
- On-board propulsion system used to capture at the moon, insert into and maintain 50 km mean altitude circular polar reconnaissance orbit.
- 1 year mission with extended mission options.
- Orbiter is a 3-axis stabilized, nadir pointed spacecraft designed to operate continuously during the primary mission.
- Investigation data products delivered to Planetary Data Systems (PDS) within 6 months of primary mission completion.

Implementing the Vivion

LRO Mission Overview

Launch: October 28, 2008

Minimum Energy

Lunar Transfer ~ 4 Days

Lunar Orbit Insertion Sequence, 4-6 Days

Commissioning Phase, 30 x 216 km Altitude Quasi-Frozen Orbit, Up to 60 Days

Polar Mapping Phase, 50 km Altitude Circular Orbit, At least 1 Year

Nominal End of Mission: February 2010

LRO Instrument Summary

INSTRUMENT	SPONSORSHIP	MEASUREMENT	LVL 1 RQMTS TRACEABILITY
CRaTER Cosmic Ray Telescope for the Effects of Radiation	PI:Harlan Spence, BU IM: Rick Foster, MIT ISE: Bob Goeke, MIT	Tissue equivalent response to radiation LET energetic particle spectra 200 keV – 1 GeV /nuc	M10 - Radiation Environment M20 - Radiation on Human-equivalent tissue
DLRE Diviner Lunar Radiometer Experiment	PI: David Paige, UCLA IM: Wayne Hartford, JPL ISE: Marc Foote, JPL	Better than 500m scale maps of temperature, rock abundances, mineralogy	M50 - Surface Temperatures M80 - Surface Features and Hazards M90 - Polar Illumination M100 - Regolith Resources
LAMP Lyman-Alpha Mapping Project	PI: Alan Stern, SwRI IM: Ron Black, SwRI ISE: Dave Slater, SwRI	UV Albedo maps of the permanently shadowed areas Maps of frosts in permanently shadowed areas, 3km resolution	M60 – Images of PSRs M70 – Subsurface Ice
LEND Lunar Exploration Neutron Detector	PI: Igor Mitrofanov, IKI Deputy PI: Roald Sagdeev, UMD IM: Anton Sanin, IKI ISE: Maxim Litvak, IKI	Maps of hydrogen in upper 2m of Moon at 10km scales Global distribution of neutrons around the Moon	M10 – Radiation Environment M70 – Subsurface Ice M110 – Hydrogen Mapping
LOLA Lunar Orbiter Laser Altimeter	PI: David Smith, GSFC Co-PI: Maria Zuber, MIT IM: Glenn Jackson, GSFC ISE: John Cavanaugh, GSFC	~50m scale polar topography at <10cm vertical, and roughness and slope data	M30 - Topography Grid M40 - Topography Resolution M60 – Images of PSRs M80 - Surface Features and Hazards M90 – Polar Illumination
LROC Lunar Reconnaissance Orbiter Camera	PI: Mark Robinson, ASU IM: Scott Brylow, MSSS ISE: Mike Caplinger, MSSS	1000s ² of 50cm/pixel images (125km), and entire Moon at 100m visible, 400m UV	M40 – Topography Resolution M80 – Surface Features and Hazards M90 – Polar Illumination M100 – Regolith Sources
Mini-RF Technology Demonstration	POC: Keith Raney, JHU/APL PM: Bill Marinelli, NAWC DPM: Dean Huebert, NAWC	X&S-band Radar imaging and radiometry	P160 - Demonstrate new lightweight SAR Technologies

LRO Spacecraft

LRO Orbiter Characteristics			
Mass (CBE)	1823 kg	Dry: 924 kg, Fuel: 898 kg (1263 m/sec)	
Orbit Average Bus Power	681 W		
Data Volume, Max Downlink rate	459 Gb/day, 100Mb/sec		
Pointing Accuracy, Knowledge	60, 30 arc-sec		

- Launch Services Provided by KSC
- Atlas V 401 through NLS Contract
- 2000 kg; Sun Exclusion thru Ascent
- 4m fairing; H/K data thru EELV I/F
- Co-manifested with LCROSS lunar mission
- Launch Site Processing at Astrotech including Fueling & Control Center

LRO Ground Segment Overview

- Mission Operations Center& Flight Dynamics Facility at GSFC
- Primary Ground Station at White Sands (Ka & S-Band)
- Global S-Band TT&C provided by NASA GN & SN.
- Science Operations Centers (SOC) at PI institutions
- S-band tracking augmented by laser ranging system to improve accuracy.

LRO Mission – Current Status

- The LRO Mission was confirmed in May 2006 and successfully completed its mission CDR in November 2006
 - Instruments completed CDRs during Spring and Summer 2006 and are proceeding with fabrication and testing.
- All spacecraft bus avionics are in ETU testing and proceeding toward flight fabrication
- All major procurements (ACS sensors, battery, gimbal actuators, RF systems) are awarded and on schedule for required delivery dates.
- Mission Operations Center being outfitted at GSFC
- White Sands 1 (WS1) Ka-S Band primary ground station under construction
- Project Reserves (Budget, Schedule, Mass, Power) are stable and at acceptable levels.

