

Lunar Reconnaissance Orbiter & Lunar CRater Observation and Sensing Satellite Project

Commercial Development Summit May 13, 2008

Benjamin Neumann Exploration Systems Mission Directorate

Exploration Roadmap

- Provide early information for human missions to the Moon
 - Focus on unknowns associated with the North and South Poles likely destinations for a lunar outpost
- Increase capability and sustainability through strategic priorities:
 - Good quality topographical global map
 - Surface temperature and illumination characteristics
 - Resource distribution to overlay map
 - Radiation environment
 - Search for presence of water in permanently shadowed craters at lunar poles

- Launch in late 2008 on a Atlas V into a direct insertion trajectory to the moon. Co-manifested with LCROSS lunar impacter mission.
- On-board propulsion system used to capture at the moon, insert into and maintain 50 km mean altitude circular polar reconnaissance orbit.
- 1 year mission with extended mission options.
- Orbiter is a 3-axis stabilized, nadir pointed spacecraft designed to operate continuously during the primary mission.
- Investigation data products delivered to Planetary Data Systems (PDS) within 6 months of primary mission completion.

Interpretation: Polar Hydrogen Deposits on the Moon

- The deposits at the north appear to be in the form of many small pockets which average about 100 ppm above the equatorial hydrogen content.
 - o The spatial resolution of the spectrometer was on the order of 50 to 150 km, insufficient to resolve surface features associated with the hydrogen signature.
- The deposits in the permanently-shaded craters near the south are consistent with a thick soil containing an enhancement of 1670±890 ppm hydrogen.

equivalent to 1.5 ± 0.8 wt.% H2O

Observations from Lunar Prospector Neutron Spectrometer

Lunar Reconnaissance Orbiter

Goddard Space Flight Center (GSFC)

LROC Lunar Reconnaissance **Orbiter Camera**

Arizona State Univ

LEND Lunar Exploration Neutron Detector

Russian Inst for Space Research

DLRE **Diviner Lunar** Radiometer Experiment

UCLA/JPL

CRaTER Cosmic Ray Telescope for the Effects of Radiation

Boston U/MIT

MINI-RF Synthetic Aperture Radar

Naval Air Warfare Center

LOLA Lunar Orbiter Laser Altimeter

GSFC

Southwest Research Inst 6

Lyman Alpha

Mapping Project

LRO Spacecraft

LRO Orbiter Characteristics					
Mass (CBE)	1845 kg	Dry: 924 kg, Fuel: 898 kg (1263 m/sec)			
Orbit Average Bus Power	681 W				
Data Volume, Max Downlink rate	461 Gb/day, 100Mb/sec				
Pointing Accuracy, Knowledge	60, 30 arc-sec				
Cosmic Ray Telescope for the Effer of Radiation (CRaTER)	cts	Spacecraft Bus	Solar Array (Deployed)		

Instrument Suite has Detailed Traceability to Exploration Requirements

Instrur	nent	Navigation/ Landing Site Safety	Locate Resources	Life in Space Environment	New Technology
CRATER Cosmic Ray Telescope for the Effects of Radiation	ALL BAR			 High Energy Radiation Radiation effects on human tissue 	
DLRE Diviner Lunar Radiometer Experiment		Rock abundance	TemperatureMineralogy		
LAMP Lyman Alpha Mapping Project			Surface IceImage Dark Craters		
LEND Lunar Exploration Neutron Detector			 Subsurface Hydrogen Enhancement Localization of Hydrogen Enhancement 	 Neutron Radiation Environment 	
LOLA Lunar Orbiter Laser Altimeter	35 cm 45 cm	 Slopes Topography/Rock Abundance Geodesy 	 Simulation of Lighting Conditions Crater Topography Surface Ice Reflectivity 		
LROC Lunar Reconnaissance Orbiter Camera		Rock hazardsSmall craters	Polar Illumination MoviesMineralogy		
Mini-RF Technology Demonstration					 S-band and X-band SAR demonstration

Lunar Crater Observation & Sensing Satellite

Ames Research Center (ARC) &

NORTHROP GRUMMAN

Mid-Infrared Camera

- Curtain, Crater Temperature
- Curtain Morphology
- · Water Ice

Visible Camera

- Impact Context
- Curtain Morphology

Near Infrared Camera

- Water Ice / Curtain Morphology
- NIR Context

Visible Spectrometer

- Flash Spectroscopy
- Water Vapor
- Organics

Near Infrared Spectrometers

- Curtain Water Ice & Vapor
- Hydrated minerals

- The LCROSS Mission is a <u>Lunar Kinetic</u> <u>Impactor</u> employed to investigate the presence & nature of <u>water ice</u> on the Moon
 - LCROSS is a 1000kg secondary payload riding on LRO launch vehicle in late 2008
 - LRO/LCROSS will launch on an Atlas V
 - LRO separates and LCROSS utilizes lunar gravity-assist to establish a high-ecliptic inclination, 3-4 month cruise orbit
 - LCROSS separates from 2300kg Centaur stage, to enable LCROSS to observe impact and measure ejecta plume
 - Centaur expected to excavate ~200 metric tons of regolith, leaving a crater the size of ~1/3 of a football field, ~15 feet deep.
 - The S-S/C becomes a ~700kg 'impactor' as well
 - Ground and space-based observation being organized

Perform first *"in-situ"* analysis of regolith from a permanently shadowed region

Solar UV

Science goals:

- Confirm the presence or absence of water ice in a permanently shadowed region on the Moon
- Identify the form/state of hydrogen observed by at the lunar poles
- Quantify, if present, the amount of water in the lunar regolith, with respect to hydrogen concentrations
- Characterize the lunar regolith within a permanently shadowed crater on the Moon

Shepherding Spacecraft Configuration

LRO Mission

LRO Enables Global Lunar Surface Access

